課程描述INTRODUCTION
大數據實戰(zhàn)培訓班
· IT人士· 營銷副總· 營銷總監(jiān)· 中層領導· 其他人員



日程安排SCHEDULE
課程大綱Syllabus
大數據實戰(zhàn)培訓班
【課程簡介】
大數據建模與分析挖掘技術已經逐步地應用到新興互聯(lián)網企業(yè)(如電子商務網站、搜索引擎、社交網站、互聯(lián)網廣告服務提供商等)、銀行金融證券企業(yè)、電信運營等行業(yè),給這些行業(yè)帶來了一定的數據價值增值作用。本次課程面向有一定的數據分析挖掘算法基礎的工程師,帶大家實踐大數據分析挖掘平臺的項目訓練,系統(tǒng)地講解數據準備、數據建模、挖掘模型建立、大數據分析與挖掘算法應用在業(yè)務模型中,結合主流的Hadoop與Spark大數據分析平臺架構,實現項目訓練。結合業(yè)界使用最廣泛的主流大數據平臺技術,重點剖析基于大數據分析算法與BI技術應用,包括分類算法、聚類算法、預測分析算法、推薦分析模型等在業(yè)務中的實踐應用,并根據講師給定的數據集,實現兩個基本的日志數據分析挖掘系統(tǒng),以及電商(或內容)推薦系統(tǒng)引擎。本課程基本的實踐環(huán)境是Linux集群,JDK1.8, Hadoop 2.7.*,Spark 2.1.*。學員需要準備的電腦最好是i5及以上CPU,4GB及以上內存,硬盤空間預留50GB(可用移動硬盤),基本的大數據分析平臺所依賴的軟件包和依賴庫等,講師已經提前部署在虛擬機鏡像(VMware鏡像),學員根據講師的操作任務進行實踐。本課程采用技術原理與項目實戰(zhàn)相結合的方式進行教學,在講授原理的過程中,穿插實際的系統(tǒng)操作,本課程講師也精心準備的實際的應用案例供學員動手訓練。
【培訓目標】
1.讓學員掌握常見的機器學習算法,深入講解業(yè)界成熟的大數據分析挖掘與BI平臺的實踐應用,并以客戶分析系統(tǒng)、日志分析和電商推薦系統(tǒng)為案例,串聯(lián)常用的數據挖掘技術進行應用教學。
2.本課程讓學員充分掌握大數據平臺技術架構、大數據分析的基本理論、機器學習的常用算法、國內外主流的大數據分析與BI商業(yè)智能分析解決方案、以及大數據分析在搜索引擎、廣告服務推薦、電商數據分析、金融客戶分析方面的應用案例。
3.本課程強調主流的大數據分析挖掘算法技術的應用和分析平臺的實施,讓學員掌握主流的基于大數據Hadoop和Spark、R的大數據分析平臺架構和實際應用,并用結合實際的生產系統(tǒng)案例進行教學,掌握基于Hadoop大數據平臺的數據挖掘和數據倉庫分布式系統(tǒng)平臺應用,以及商業(yè)和開源的數據分析產品加上Hadoop平臺形成大數據分析平臺的應用剖析。
【培訓人群】
1.大數據分析應用開發(fā)工程師
2.大數據分析項目的規(guī)劃咨詢管理人員
3.大數據分析項目的IT項目高管人員
4.大數據分析與挖掘處理算法應用工程師
5.大數據分析集群運維工程師
6.大數據分析項目的售前和售后技術支持服務人員
【詳細大綱與培訓內容】
兩個完整的項目任務和實踐案例(重點)
1.日志分析建模與日志挖掘項目實踐
a)Hadoop,Spark,并結合ELK技術構建日志分析系統(tǒng)和日志數據倉庫
b)互聯(lián)網微博日志分析系統(tǒng)項目
2.推薦系統(tǒng)項目實踐
a)電影數據分析與個性化推薦關聯(lián)分析項目
b)電商購物籃分析項目
Hadoop,Spark,可結合Oryx分布式集群在個性化推薦和精準營銷項目。
項目的階段性步驟貫穿到三天的培訓過程中,第三天完成整個項目的原型
培訓內容安排如下:
時間
內容提要
授課詳細內容
實踐訓練
第一天
業(yè)界主流的數據倉庫工具和大數據分析挖掘工具
■業(yè)界主流的基于Hadoop和Spark的大數據分析挖掘項目解決方案
■業(yè)界數據倉庫與數據分析挖掘平臺軟件工具
■Hadoop數據倉庫工具Hive
■Spark實時數據倉庫工具SparkSQL
■Hadoop數據分析挖掘工具Mahout
■Spark機器學習與數據分析挖掘工具MLlib
■大數據分析挖掘項目的實施步驟
配置數據倉庫工具Hadoop Hive和SparkSQL
部署數據分析挖掘工具Hadoop Mahout和Spark MLlib
大數據分析挖掘項目的數據集成操作訓練
■日志數據解析和導入導出到數據倉庫的操作訓練
■從原始搜索數據集中抽取、集成數據,整理后形成規(guī)范的數據倉庫
■數據分析挖掘模塊從大型的集中式數據倉庫中訪問數據,一個數據倉庫面向一個主題,構建兩個數據倉庫
■同一個數據倉庫中的事實表數據,可以給多個不同類型的分析挖掘任務調用
■去除噪聲
項目數據集加載ETL到Hadoop Hive數據倉庫并建立多維模型
基于Hadoop的大型數據倉庫管理平臺—HIVE數據倉庫集群的多維分析建模應用實踐
■基于Hadoop的大型分布式數據倉庫在行業(yè)中的數據倉庫應用案例
■Hive數據倉庫集群的平臺體系結構、核心技術剖析
■Hive Server的工作原理、機制與應用
■Hive數據倉庫集群的安裝部署與配置優(yōu)化
■Hive應用開發(fā)技巧
■Hive SQL剖析與應用實踐
■Hive數據倉庫表與表分區(qū)、表操作、數據導入導出、客戶端操作技巧
■Hive數據倉庫報表設計
■將原始的日志數據集,經過整理后,加載至Hadoop + Hive數據倉庫集群中,用于共享訪問
利用HIVE構建大型數據倉庫項目的操作訓練實踐
Spark大數據分析挖掘平臺實踐操作訓練
■Spark大數據分析挖掘平臺的部署配置
■Spark數據分析庫MLlib的開發(fā)部署
■Spark數據分析挖掘示例操作,從Hive表中讀取數據并在分布式內存中運行
第二天
聚類分析建模與挖掘算法的實現原理和技術應用
■聚類分析建模與算法原理及其在Spark MLlib中的實現與應用,包括:Canopy聚類(canopy clustering)
■K均值算法(K-means clustering)
■模糊K均值(Fuzzy K-means clustering)
■EM聚類,即期望*化聚類(Expectation Maximization)
■以上算法在Spark MLib中的實現原理和實際場景中的應用案例。
■Spark聚類分析算法程序示例
基于Spark MLlib的聚類分析算法,實現日志數據集中的用戶聚類
分類分析建模與挖掘算法的實現原理和技術應用
■分類分析建模與算法原理及其在Spark MLlib中的實現與應用, 包括:Spark決策樹算法實現
■邏輯回歸算法(logistics regression)
■貝葉斯算法(Bayesian與Cbeyes)
■支持向量機(Support vector machine)
■以上算法在Spark MLlib中的實現原理和實際場景中的應用案例。
■Spark客戶資料分析與給用戶貼標簽的程序示例
■Spark實現給商品貼標簽的程序示例
■Spark實現用戶行為的自動標簽和深度技術
基于Spark MLlib的分類分析算法模型與應用操作
關聯(lián)分析建模與挖掘算法的實現原理和技術應用
■預測、推薦分析建模與算法原理及其在Spark MLlib中的實現與應用,包括:Spark頻繁模式挖掘算法(parallel FP Growth Algorithm)應用
■Spark關聯(lián)規(guī)則挖掘(Apriori)算法及其應用
■以上算法在Spark MLib中的實現原理和實際場景中的應用案例。
■Spark關聯(lián)分析程序示例
基于Spark MLlib的關聯(lián)分析操作
第三天
推薦分析挖掘模型與算法技術應用
■推薦算法原理及其在Spark MLlib中的實現與應用,包括:Spark協(xié)同過濾算法程序示例
■Item-based協(xié)同過濾與推薦
■User-based協(xié)同過濾與推薦
■交叉銷售推薦模型及其實現
推薦分析實現步驟與操作(重點)
回歸分析模型與預測算法
■利用線性回歸(多元回歸)實現訪問量預測
■利用非線性回歸預測成交量和訪問量的關系
■基于R+Spark實現回歸分析模型及其應用操作
■Spark回歸程序實現異常點檢測的程序示例
回歸分析預測操作例子
圖關系建模與分析挖掘及其鏈接分析和社交分析操作
■利用Spark GraphX實現網頁鏈接分析,計算網頁重要性排名
■實現信息傳播的社交關系傳遞分析,互聯(lián)網用戶的行為關系分析任務的操作訓練
圖數據的分析挖掘操作,實現微博數據集的社交網絡建模與關系分析
神經網絡與深度學習算法模型及其應用實踐
■神經網絡算法Neural Network的實現方法和挖掘模型應用
■基于人工神經網絡的深度學習的訓練過程,傳統(tǒng)神經網絡的訓練方法
■Deep Learning的訓練方法
■深度學習的常用模型和方法CNN(Convolutional Neural Network)卷積神經網絡
■RNN(Recurrent Neural Network)循環(huán)神經網絡模型
■Restricted Boltzmann Machine(RBM)限制波爾茲曼機
■基于Spark的深度學習算法模型庫的應用程序示例
基于Spark或TensorFlow神經網絡深度學習庫實現文本與圖片數據挖掘
項目實踐
■日志分析系統(tǒng)與日志挖掘項目實踐Hadoop,Spark,ELK技術構建日志數據倉庫
■互聯(lián)網微博日志分析系統(tǒng)項目
■推薦系統(tǒng)項目實踐。電影數據分析與個性化推薦關聯(lián)分析項目
項目數據集和詳細的實驗指導手冊由講師提供
培訓總結
■項目方案的課堂討論,討論實際業(yè)務中的分析需求,剖析各個環(huán)節(jié)的難點、痛點、瓶頸,啟發(fā)出解決之道;完成講師布置的項目案例,鞏固學過的大數據分析挖掘處理平臺技術知識以及應用技能
討論交流
【講師介紹】
周老師,男,中國科學院通信與信息系統(tǒng)專業(yè)博士。北京郵電大學移動互聯(lián)網與信息化實驗室特聘研究員、對外經貿大學信息學院特聘兼職教師、中國移動集團高級培訓講師,長期從事大數據、4G、移動互聯(lián)網安全、管理及大數據*營銷等研究方向。國內*信息系統(tǒng)架構師,金牌講師,技術顧問,移動開發(fā)專家。擁有豐富的通信信息系統(tǒng)設計、開發(fā)經驗及培訓行業(yè)經驗,先后為全國超過15家省移動公司,超過30家地市移動公司有過項目開發(fā)合作及授課,擔任多個大型通信項目的總師。
鐘老師,男,博士畢業(yè)于中國科學院,獲工學博士學位(計算機系統(tǒng)結構方向),曾在國內某高校和某大型通信企業(yè)工作過,目前在中國科學院某研究所工作,高級工程師,副研究員,課題組長,團隊成員二十余人。大數據、云計算系列課程建設與教學專家,新技術課程開發(fā)組長。近八年來帶領團隊主要從事大數據管理與高性能分析處理(Hadoop、Spark、Storm)、大數據倉庫(HIVE)和實時數據倉庫(SparkSQL、Shark),大數據建模挖掘與機器學習(Mahout、MLib、Oryx、Pentaho BI、SAS、SPSS、R等)、MPP并行數據倉庫(Greenplum etc)、NoSQL與NewSQL分布式數據庫(Hbase、MongoDB、Cassandra etc)、(移動)電子商務平臺、大數據搜索平臺(ElasticSearch、Solr、Lucene等)、云計算與虛擬化(OpenStack,VMware,XenServer,CloudStack,KVM,Docker,SaaS服務)、云存儲系統(tǒng)、Swift對象存儲系統(tǒng)、網絡GIS地圖服務器、互聯(lián)網+在線教育云平臺方面的項目研發(fā)與管理工作。
大數據實戰(zhàn)培訓班
轉載:http://www.caprane.cn/gkk_detail/35600.html
已開課時間Have start time
大數據課程內訓
- 數字技術與數字工具應用 王文琭
- 《數據資源入表與數據治理》 鐘凱
- 以需求為導向的大數據精準營 張世民
- 數字時代下的營銷趨勢 韓天成
- 《銀行數據驅動經營方法論與 宗錦(
- 政府數字化轉型實務 焦波
- 大數據應用現狀與未來發(fā)展重 胡國慶
- 《跨境電商全鏈路AI賦能轉 黃光偉
- 數智化領域新技術與典型應用 胡國慶
- 數字經濟時代銀行開展數字化 李勇
- 數字經濟與數據技術應用與變 王文琭
- 醫(yī)療行業(yè)數字化營銷趨勢及實 王文琭